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The Taylor-Gortler vortex instability equations are formulated for steady and 
unsteady interacting boundary-layer flows. The effective Gortler number is shown 
to be a function of the wall shape in the boundary layer and the possibility of both 
steady and unsteady Taylor-Gortler modes exists. As an example the steady flow 
in a symmetrically constricted channel is considered and it is shown that unstable 
Gortler vortices exist before the boundary layers at  the wall develop the Goldstein 
singularity discussed by Smith & Daniels (1981). As an example of an unsteady 
spatially varying basic state we also consider the instability of high-frequency 
large-amplitude two- and three-dimensional Tollmien-Schlichting waves in a curved 
channel. It is shown that they are unstable in the first ‘Stokes-layer stage’ of the 
hierarchy of nonlinear states discussed by Smith & Burggraf (1985). This instability 
of Tollmien-Schlichting waves in an internal flow can occur in the presence of either 
convex or concave curvature. Some discussion of this instability in external flows is 
given. 

1. Introduction 
Our concern is with the Taylor-Gortler instability of interactive boundary-layer 

flows of the type which occur in triple-deck theory. Thus, we investigate the 
instability of the ‘lower-deck’ boundary layer which is set up when a classical 
boundary layer with Reynolds number Re encounters a hump of height and length 
order Re-! and Re-: respectively. We find that the form of the Taylor-Gortler 
instability equations in the lower deck are almost identical with those appropriate 
to a classical boundary layer. The main difference is that the wall shape function 
f ( X ,  T) enters the instability equations and, in fact, for steady flows f x x  plays the 
role of the Gortler number. 

We shall see that for unsteady interactive boundary-layer flows both steady and 
unsteady Taylor-Gortler vortices of the type discussed by Hall (1982, 1983) and 
Seminara & Hall (1976) respectively are possible. These flows are also potentially 
unstable to short-wavelength Rayleigh modes and the reader is referred to the papers 
by Smith & Bodonyi (1985) and Tutty & Cowley (1986) for a discussion of that 
problem. In addition Tollmien-Schlichting waves are a possible source of instability 
in these flows; here we concentrate on the Taylor-Gortler mechanism. In general the 
instability equations which we derive must be solved numerically because a parallel 
flow and/or a quasi-steady approximation cannot be justified. However, in order to 
demonstrate that some of these flows are unstable we shall here concentrate on two 
problems for which some asymptotic progress is possible. 
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First, we look in detail a t  the steady flow in a symmetrically constricted channel. 
Smith & Daniels (1981) have shown that when h the scaled height of constriction 
becomes large a classical boundary layer of thickness O(hd)  is set up within the wall 
boundary layer. This inner boundary layer develops a Goldstein singularity beyond 
the minimum channel width position but Smith and Daniels showed that the 
singularity could be removed without any upstream influence being set up. Here we 
consider the instability of the flow before the boundary layer develops the singularity. 
For large values of h we are able to  solve the instability equations asymptotically 
and demonstrate the instability of the h-l layer in the presence of concave curvature. 
In  general the instability occurs before the Goldstein singularity develops. However, 
it is possible to  choose humps with the required concave curvature only beyond the 
position where the singularity develops. In  the latter case the instability mechanism 
of the h-: layer does not occur. The Smith-Daniels calculation also applies to 
non-symmetric channel flows and to external boundary layers ; thus the instability 
mechanism which we describe in $3  also applies to these flows. 

Secondly, we look a t  the unsteady interactive boundary layer which governs the 
growth of Tollmien-Schlichting waves in parallel or boundary-layer flows. Here the 
unsteadiness is characterized by rR the frequency of the Tollmien-Schlichting wave. 
For definiteness, and to avoid the complications of boundary-layer growth, we look 
a t  the instability of the waves in a slightly curved channel. Recently Smith & 
Burggraf (1985) looked at the structure of high-frequency large-amplitude Tollmien- 
Schlichting waves in a variety of situations. Dependent on the size of the disturbance 
and the particular flow under investigation they found a hierarchy of nonlinear 
partial differential systems to describe the disturbance. The first nonlinear stage 
discussed by Smith & Burggraf is such that the disturbance has the form of a Stokes 
layer near the wall. We investigate the instability of this flow and identify the critical 
disturbance size above which the Tollmien-Schlichting wave is unstable to the 
Stokes layer Taylor-GGrtler mode identified by Seminara & Hall (1976). When the 
Tollmien-Schlichting wave has amplitude greater than this critical value a three- 
dimensional flow containing streamwise vortices develops. The effect of this new flow 
on the growth of the wave into the larger amplitude states of Smith & Burggraf is 
not yet known. The generalization of the instability analysis of two-dimensiona.1 
Tollmien-Schlichting waves to oblique waves is given in Appendix B. It was shown 
by Hall (1985) that a weak crossflow destroys the GGrtler instability mechanism in 
a classical boundary layer unless the chordwise and spanwise velocity components 
are proportional. I n  the latter case the instability calculation can be reduced to an 
equivalent two-dimensional Gortler problem. We show that this is the case for 
oblique Tollmien-Schlichting waves. We can then show that a Tollmien-Schlichting 
wave of a given high frequency is most unstable when it is two-dimensional. In  
Appendix A we show that the calculation of the instabilities of Tollmien-Schlichting 
waves in channels is valid in other situations. 

I n  $2 of this paper we derive the equations governing the centrifugal instability 
of ‘lower-deck ’ boundary-layer flows. These equations are valid in other interactive 
boundary-layer flows such as the Smith-Daniels problem discussed in $3. I n  $4 we 
investigate the instability of two-dimensional Tollmien-Schlichting waves in curved 
channel flows whilst in $5 we give some further discussion. Finally in Appendix A 
and Appendix B our results of $4 are generalized to other flows. 
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2. The Taylor-GGrtler instability equations for triple-deck flows 
It is useful at this stage to discuss briefly the Taylor-Gortler instability equations 

for a classical two-dimensional boundary-layer flow over a curved wall. The reader 
is referred to the papers by, for example, Gortler (1940), Smith (1955), Floryan & 
Saric (1979) and Hall (1982) for a discussion of the approximations required to obtain 
a self-consistent set of linear stability equations. 

Suppose that the 1 and U* are typical length and velocity scales for the flow in 
the x-direction and that v is the kinematic viscosity of the fluid. We define a Reynolds 

(2.1) 
U*l number Re by 

Re=-, 

and take x and y to be dimensionless variables measuring distance along and normal 
to a surface with local curvature u-lK(z).  The variable x is scaled on 1 whilst y is a 
boundary-layer variable scaled on 1Re-4. The basic flow U, is of the form 

V 

U, = U*(U(Z, y), Re-h(x, y), o)+  ..., 
and this flow is perturbed by writing 

u = u,+ U*(U(x,y),Re-4V(x,y),Re-kW(x,y)) exp{iReikz}. (2.2) 

Here k is a non-dimensional wavenumber in the spanwise direction and we have 
assumed that the instability occurs on the boundary-layer scale. 

From the momentum and continuity equations we can show that in the limit 
Re+ co with the Gortler number G = ZRet(l/u) held fixed the linear stability 
equations are 

U,+ V,+ikW = 0, ( 2 . 3 ~ )  

(2.3b) 

uV,+UV,+VV,+ ~ , + K ( s ) ~ U = - P , + { a i - k ' }  V ,  ( 2 . 3 ~ )  

(2.3d) uWz+VW, = -ikP+{ai-k2} W .  

Here P is the non-dimensional pressure perturbation corresponding to ( U ,  V ,  W )  and 
we have assumed that the perturbation is steady. The generalization of ( 2 . 3 ~ 4 )  to 
a weakly three-dimensional boundary layer is given by Hall (1985). 

The essential difficulty with (2.3a-d) is that for G and k = O(1) there is no rational 
reason why a parallel-flow approximation should be made and the partial differential 
system must be solved numerically as was done by Hall (1983). For k % 1,  but G x k4 
an asymptotic solution to (2.3a-d) was given by Hall (1982) who showed that in this 
limit non-parallel effects can be taken care of in a self-consistent manner. For 0 ( 1 )  
wavenumbers the numerical calculations of Hall (1983) showed that the position of 
neutral stability is a function of the initial disturbance. At  higher Gortler numbers 
the local growth rate approaches the asymptotic result which, in this regime, is 
consistent with a parallel-flow theory calculation. It has been assumed elsewhere that 
this latter result justifies the use of parallel-flow theories. However, in the only 
regime where the parallel-flow theories are valid, i.e. k B 1, an asymptotic result of 
a t  least the same accuracy as any parallel-flow theory can be written down in closed 
form. 

We now show how the equations corresponding to (2.3a-d) can be derived for a 
basic flow governed by some interactive boundary-layer structure. For definiteness 
we focus on a flow governed by triple-deck theory. We stress that the formulation for 

- uU,+ fiz+VU,+ FEY = {ai-k'} U ,  
- 

- 

15 P L M  171 
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other interactive boundary-layer structures is essentially identical. Consider then the 
flow over the wall 

where X = E - ~ X ,  and T = ~ - ~ ( t U * / l ) .  Here t denotes time whilst the small parameter 
E = Red. We define the lower-deck variable Y by 

y = E5f(X, TI, 

Y = s-5y, 

and in the lower deck the basic state expands as 

(€V(X, Y ) ,  € 3 V ( X ,  Y ) ,  0) + . . .) UBL - 
U* 
-- 

whilst the pressure expands as p -p = €%(XI+ ... 

The equations which determine the flow in the lower deck are 
- u,+uu,+vu, = - j5x+Vyy ,  ( 2 . 4 ~ )  

(2.4b) 
- u,+v, = 0, 

whilst the boundary conditions at the wall are 
- 
u=O, V = f T  on Y = f ( X , T ) ,  ( 2 . 5 ~ )  

and a t  infinity we require 
V - t  Y + A ( X , T ) ,  (2.5b) 

where A is the displacement function which must be related to p through a 
pressurdisplacement law. If we make the unsteady Prandtl transform 

Y +  Y + f ( X , t ) ,  V+V+Ef,+f,, (2.6) 

then (2.4a), (2.4b) are unchanged whilst (2.5a, 13) reduces to 
- 
u = V = O ,  Y = O ,  

z+ Y + A + f ,  Y - t a .  (2.7) 

We now investigate the instability of this flow to Taylor-Gortler vortices which 
might be associated with either the steady or unsteady components of the basic state. 
We look for perturbations confined to the lower deck and having spanwise wavelength 
comparable with the lower-deck thickness. The possible source of instability is, of 
course, the curvature of the wall in the lower deck. We write 

where A 4 1 and E = exp (ikZ/e5). Here Z has been scaled on 1 and we have assumed 
in (2.8) that  the normal and spanwise velocity components are comparable. This is 
the usual case for Taylor-Gortler instabilities and the relative scaling of the X and 
Y velocity components is again consistent with that appropriate to  the classical 
Taylor vortex problem (see, for example, Davey 1962). The pressure perturbation p+  
in the lower deck expands as 

pu*2- ’+ - ssAP(X, Y ,  T )  E,  (2.9) 

and the above relatively small scaling for P enables us to retain the convective and 
diffusive terms in the Y and 2 momentum equations. It remains for us to substitute 
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the perturbed flow into the NavieJ-Stokes equations for the lower deck with A 4 1 
and linearize about the basic state. We note that at this stage it has not been 
necessary to define a Gortler number for the flow. After linearizing about the basic 
state and making the Prandtl transform (2.6) together with 

we obtain I 
~ T + U V X +  fix+?jvy+ ~y+2u{fXXu+fXT} =-Py+{a$-k2} v, 

WT+UWx+EWy = -ikP+{a%-k2} W, 

u = v = w = o ,  Y = O ,  Y+m. 
which must be solved subject to 

(2.1 1) 

We see that the generalization of (2.3) to an unsteady triple-deck flow leads to almost 
the same equations but with KGU replaced by 2{ f x x U +  fXT}. For steady triple-deck 
flows this means that f x x  plays the role of the Gortler number, whilst for unsteady 
flows an extra term proportional to UfXT arises due to the vertical motion of the 
boundary. For time-periodic basic states the system (2.10) contains the terms which 
lead to centrifugal instabilities in Stokes layers. Thus in general we must be alert to 
the possibility of both types of Gortler instability. 

The solution of (2.10) is in general a numerical problem which, for time-dependent 
flows, will be an order of magnitude more difficult than the steady state calculations 
of Hall (1983). In the next section we will look at a particular steady state for which 
it is possible for us to solve (2.10) asymptotically in a self-consistent manner. As 
stated previously the equations (2.10) are valid for any interactive boundary-layer 
flow. In general the derivation of these equations follows that given above but with 
the following scalings to be made. First the x, y ,  and z disturbance velocity 
components scale with the x, y ,  and y basic state velocity components respectively. 
Secondly the y and z variations of the basic state are on the interaction-layer scale. 
Finally the pressure perturbation is reduced in size until the pressure gradient and 
viscous terms in the y and z momentum equations are comparable. 

3. Symmetric channel flows 
In general it is not possible to solve (2.10) analytically. We now show how 

asymptotic methods can be used for a particular steady basic flow. We refer to the 
internal channel flows discussed by Smith & Daniels (1981). In that problem the wall 
boundary-layer thickness is - Re-4 and the x variations are on an O( 1) lengthscale. 
Howevcr, if the disturbance quantities are scaled as outlined above then (2.10) still 
apply. The basic state satisfies (2.4a, b )  but with A = 0 in (2.7) since the channel is 
symmetric. 

For steady flows we saw in $2 that f x x  plays the role of the Gortler number so 
that we expect the flow to become more unstable with increasing hump height. In 
view of the work of Hall (1982) we might then expect that an asymptotic solution 
of (2.10) should be possible. The Smith-Daniels problem is a suitable candidate for 
such an analysis because its structure for I f  I 9 1 is reasonably well understood. 
Suppose that we write 

f(X) = h W ) ,  ( 3 . 1 ~ )  

15-2 
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with h % 1.  In this situation a classical boundary layer possibly extending to 
X = - 00 and of thickness x h-4 is attached to the hump before separation. In this 

(3.1 b )  u = h T +  ..., layer U and V expand as 

(3.1 c )  v = h V +  ..., 
where n a n d  Tare functions of X and 5 = hi Y ,  and satisfy the classical boundary-layer 
equations with pressure gradient - FF, and v+ F when c+ CO. The effective Gortler 
number for the inner O(h-:) boundary layer then becomes O(h:) so that, on the basis 
of the work of Hall (1982), we expect that neutral modes will have k = O(h3). The 
latter paper gives the essential details for the structure of a small-wavelength Gortler 
vortex so that in the following discussion only the essential details of the calculation 
will be given. We expect that the Gortler vortices with k = O(1) will then have large 
growth rates of order hf .  It has been pointed out to the authors by Professor 
F. T. Smith that Tollmien-Schlichting waves in this region can have even larger 
amplification rates. The question of which mode dominates the instability process 
requires a nonlinear calculation; we do not address that problem here. The Gortler 
mode will be concentrated in an internal layer of depth h - ~  which is located so as 
to maximize the local spatial growth rate. At  the location X we assume the layer is 
centred on 5 = % ( X )  and write 

The wavenumber k is then expanded as 

- 

- 

7 = h&(c-E(X)) .  ( 3 4  

k =  k,hi+k,h:+ ..., (3.3) 

(3.4) 
whilst we write 

U = { U , ( q , X ) + h - A U , ( 7 , X ) + h - % U 2 ( 7 , X ) +  ...} E*, 

together with similar expansions for V/hi ,  W / h h  and P/hE. Here the quantity E* 
is defined by X 

E* = exp[hij ( /3 , (X)+hL-~/3 , (X)+ ...} dX], (3.5) 

so that { P t ( X ) }  determine the spatial growth of the disturbance. In fact, we will 
concentrate on the neutral case and to the order which we proceed here i t  is not 
necessary to distinguish between the growth rates for different flow quantities. 
Finally, near the basic state expands as 

( 3 . 6 ~ )  

(3.6b) 

a -  U = h{D,(X)  + h- 18 7 U , ( X )  + h-b,J2U2(X) + .. .}, 
w = hi{T,(X) + h-167 V, (X)  + h-tq2V2(X) + . . .}, - a -  

where ( 3 . 6 ~ )  

It remains for us to substitute the above expansion into (2.10) and successively 

( 3 . 7 ~ )  

equate like powers of order h-&. The zeroth-order problem is found to be 
- 

(Po Do + k:) v, + 2Fx, u, u, = 0, 

(3.7b) 

iP, + k, W, = 0, ( 3 . 7 4  

(3.7d) Vk+ ik, W, = 0. 
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The required consistency condition for (3.7a), (3.7 b)  yields the zeroth-order 
eigenrelation 

and the potentially unstable root of this equation is 

(3.8) 

- 
U, Po = - ki + (2V1 To 

_ _  - -  
which occurs only for U ,  U, Fxx > 0. A t  a position where U, U, Fxx vanishes we 
have a coalescence of modes and a transition region is required. The most unstable 
position in the layer is such that 

_ _  
P o ~ o ( P o ~ o + k ; )  = m+2uo U21FXX, (3.9) 

and, with F,  k, given, (3.8), (3.9) fix and Po. From now on we restrict our attention 
to the neutral case and set Po = p, = P2 = 0 so that the flow is neutral at  X if 

(3.10) 
- -  

ki = ZU, U, Fxx, 

q+2u0 u2 = 0, 

and c is determined by the condition 
_ - _  

which requires that 
equation for V, emerges as a solvability condition : 

has a maximum at g = 5. At second-order the following 

(3.11) 
-- _ _  

V t  -gko k,  V, + ki2T2FXX[ U,  U2 + U3 U,] V, = 0. 

The solutions of (3.11) which decay when 171 + m are 

v, = v,, = U(-n -+ ,yy ) ,  

Y = .\/2{ - FXX[U, u2 + u3 U,l k,214 

where U( -n-?i, y ~ )  is a parabolic cylinder function and 
_ _  _ _  

the wavenumber k,  must then satisfy 

3Y2 
4k0 

k, = k,, = -{n+f}. 

(3.12) 

(3.13) 

The most dangerous mode corresponds to n = 0 so that correct to order hi the neutral 

(3.14) 

_ _  
It follows from (3.14) that instability can occur only if U, U, Fxx is positive 
somewhere in the flowfield. If we restrict our attention to humps with f > 0 then until 
the Goldstein singularity develops U ,  Uo is positive. Thus such flows are potentially 
unstable only where the wall is locally concave. There are clearly many flows of this 
type which can therefore never support Taylor-Gortler instabilities ; the example 
investigated numerically by Smith & Daniels (1981) is one. 

The neutral state defined by (3.14) defines the location before or beyond which 
spatially growing Taylor-Gortler vortices can exist. We expect that vortices with 
O( 1)  wavelengths will also be unstable and will have growth rates of order h4' if h % 1 .  
A t  O(1) values of h we again expect unstable Taylor-Gortler vortices with O(1) 
wavelengths. These speculative remarks must in due course be checked by solving 
(2.10) numerically. 

If we assume that F ( X )  and k % 1 are given then an alternative interpretation of 
(3.14) is available. In this situation we can think of (3.14) as an implicit equation 

_ _  
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for the hump height h B 1 which makes the Gortler vortex flow with wavenumber 
k >> 1 neutral at some position in the flow. Suppose next that F,, is positive in 
( - 00, - C) and negative in ( - C, D )  where C and D are positive constants. Since we 
also know that - u=o, y = o ,  T p o ,  !!+a, 

- 
and u x  Y + O ( f ) ,  X+-m,  

_ -  
it  follows that U, U ,  Fxx has at  least one maximum in - 00 < X < -C, 0 < y < 00. 

Suppose that the largest maximum occurs at 
- 

x =  x,, s =  sc, 

then ignoring the order hi term in (3.14) we see that, for k % 1 ,  the minimum hump 
height h, which leads to a neutral vortex anywhere (in fact at ( X c ,  s,)) is given by 

h, = {2771(Xc)T0(Xc) Fxx}-f#. (3.15) 

If h is increased beyond h, there will be two neutral locations at - X, -a, - X, + /3 
with a, /3 > 0 each corresponding to the wavenumber k. Between these positions the 
flow is formally unstable, the instability will amplify by an amount O(exp [Go) for 
some I > 0 in this interval and will become nonlinear if its initial size is sufficiently 
large. As stated above for humps with h = O(1) we expect that a similar situation 
arises for k = O( 1) with at least one finite interval where instability occurs. Beyond 
the position of the maximum constriction a further region where instability might 
occur will exist so long as the Goldstein singularity is not encountered. 

4. The instability of Tollmien-Schlichting waves in curved channel flows 
In the previous section we described how a particular steady solution of (2.4a, b), 

(2.7) becomes unstable to steady Taylor-Gortler vortices. We now show how a 
time-periodic solution of that system can also become unstable to a Stokes layer 
Taylor-Gortler vortex. The particular type of time-periodic basic state which we 
consider corresponds to a large-amplitude high-frequency Tollmien-Schlichting wave 
propagating in a curved channel. Here the curvature which causes the instability is 
not on the triple-deck lengthscale. Hence it is necessary to say a few words about 
the derivation of the appropriate form of the equations corresponding to (2.10). 

We consider the flow driven by an azimuthal pressure gradient between concentric 
cylinders of radii a, a + d .  The maximum flow velocity is taken to be aU, and if we 
define dimensionless variables x and y by 

r - a  
d ’  

18, y = - a8 x=-=&- 
d 

then in the absence of either Tollmien-Schlichting waves or Taylor-Gortler vortices 

with uo = Y(1-9). 

The Reynolds number Re is defined by 
R e = - ,  Uod 

V 

and Dean (1928) showed that (4.1) is centrifugally unstable for Re2& = O(1). The flow 
is also unstable to Tollmien-Schlichting waves for QRe > 5774. We ignore the steady 
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Taylor-Gortler mode and examine the instability of finite amplitude Tollmien- 
Schlichting waves to Stokes-layer Taylor-Gijrtler vortex modes. These occur for 
Re% = O(1) and so are apparently less important than the steady vortex mode. 
However, we shall see that they occur both near the inner and outer cylinders so that  
in more general flows over convex walls we can expect this mode to  be the only 
centrifugal one available. Our choice of the curved-channel-flow problem rather than 
an external boundary layer enables us to investigate the instability mechanism 
without the difficulties associated with the effect of boundary-layer growth. I n  
Appendix €3 we discuss the external-flow problem and determine the structures which 
lead t o  the instability mechanism discussed in this section. 

We now describe the large-amplitude high-frequency Tollmien-Schlichting distur- 
bances to (4.1) which exist for Re 9 1.  Later we shall make a further assumption 
that the frequency of these disturbances is large. The description of the disturbance 
in this region is very similar to that of Smith & Burggraf. The latter calculation is 
itself related to that of Stephanoff et al. (1983). We take z and t t o  be dimensionless 
axial and time variables scaled on d and d / U o .  The appropriate lengthscale for a 
Tollmien-Schlichting wave in a channel is O(Re4) so that, following Smith (1979), we 

(4.3) 

x = E X ,  (4.4) 

define g = Re-4 

and 

then the wall layers a t  y = 0 , l  are of thickness O(e2). Near y = 0 we write 

y = -  Y 
€2 . (4.5) 

Following Smith & Burggraf we seek a flow for Y = O(1) of the form 

u = UO(€%(X, Y ,  T ) ,  e5V(X, Y ,  T ) ,  0 ) +  ..., (4.6) 

where T = e3t. The corresponding pressure perturbation is pQ e4p(X, T )  and U, V, p 
are determined by - u,+uu,+vu, = - p x + u y y ,  

- 
u,+V, = 0, 

u = V = O ,  Y = O ,  

Z+ Y + A ( X , T ) ,  Y-+co, 

- 
(4.7) 

Near y = 1 a similar boundary layer exists whilst in the core we have 

I( = Uo(uo,0,O)+ Uo(e23(X,y,  T ) ,  e3v"(X, y ,  T ) ,  0 ) +  ..., 

p = p Ui s4y?(X, y ,  T )  + . . . . 
Here 12, i?, satisfy 

u o ~ x + ~ u o ,  = 0, 12,+cy = 0, uocx = -@', (4.9) 
and the appropriate solution is 

so that  the required pressuredisplacement relationship is 

(4.10) 

(4.11) 

Ply--l-Ply-o = &Ax,. (4.12) 
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We are interested in the large-amplitude high-frequency solutions of (4.7) discussed 
by Smith & Burggraf (1985). The latter authors investigated a hierarchy of 
high-frequency large-amplitude states beginning with the case a/aT = O(Q)  %- 1, 
u = O( 1) .  We shall concern ourselves here only with the latter state and the reader 
is referred to the Smith-Burggraf paper for a discussion of the remarkable range of 
more nonlinear states which occur for U 9 1.  However, our expansion differs slightly 
from that of Smith & Burggraf because the lower branch eigenrelations for channel 
flow do not coincide with those appropriate to Blasius flow. Thus for a disturbance 
with wavenumber a and frequency w the eigenrelation is 

- 

( 4 . 1 3 ~ )  

with go = -wetina-f. (4.13b) 

If we let a be real and large then (4.13) yields 

a3 
60 

w = -+O(a-:), (4.13 c )  

where the term O(a-:) has a positive imaginary part. (Note that the corresponding 
equation in Smith & Burggraf has w x a2.) 

We shall first consider the instability of (4.6) to a Taylor-Gortler vortex pertur- 
bation with axial wavelength O(e2). We thus write 

u = Uo(e%+e2[U(X,  Y , T )  exp(ik~e-~)+c.c . ]+ ...), 

v = U0(e5V+e5[V(X, Y , T )  exp(ik~e-~)+c.c.]+ ...), 

w = U0(e5[W(X,  Y , T )  exp(ikze-2)+c.c.]+...), 

p = pU3e411+d0[P(X,  Y ,  T )  exp (ik~e-~)+c.c.]+ ...), 

( 4 . 1 4 ~ )  

(4.14b) 

(4 .14~)  

(4.14d) 

2a 
- = 26 = De4, (4.14e) 
d 

and then 

where D can be interpreted as a Taylor-Gortler number for the Tollmien-Schlichting 
wave. The equations (4.14a-d) are then substituted into the momentum and 
continuity equations and, after linearizing about the basic state, we find that 
( U ,  V ,  W ,  P )  satisfies (2.10) but with the term 2U{ f x x ; l l +  f X T }  replaced by DEU. At 
this stage the eigenvalue problem D = D ( k )  could in principle be solved numerically 
for any given basic state. We shall proceed by looking a t  the high-frequency limit 
of the Tollmien-Schlichting waves in order to  make some analytical progress. We 
stress that  we expect instability to occur for 0 ( 1 )  frequencies but do not pursue the 
necessary large-scale computational task required to verify this speculative remark. 

We now describe the solution of the modified form of (2.10) discussed above in the 
high-frequency limit. We first note that, as shown by Smith & Burggraf, in this limit 
the disturbance develops into a Stokes layer at the wall Y = 0. 

We now write a3 w = a30 = - 
60’ 

and define a Stokes layer variable q,  timescales T ,  and a fast spatial variable X 
7 = azY, T = a3T, = a-iT, X = ax. (4.15) 

- - by 
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where 

and 

In the Stokes layer E,  V, and j5 expand as 
1- - u = ai[uolE+c.c.]+ ... = a4u01+ ..., 

v = a-~[wolE+c.c.]+ ... = a-f@,,+ ...) - 

P- p = a i~olE+c.c . ]+ . . .  = a4pO1+ ..., 
E = expi[X-Qq 

, (4.16) 

(4.17) 

In  fact pol depends on a succession of slow timescales other than p .  The corresponding 
expansion in Smith t Burggraf depends on a sequence of slow spatial variables. 
Stewart & Smith (private communication) have derived the corresponding solution 
for channel flows in terms of w as the large parameter. In that case pol depends on 
a sequence of slow spatial variables. At higher order it is found that pol satisfies a 
Stuart-Landau equation with the cubic term having a purely imaginary coefficient. 
This means that pol grows exponentially on the p timescale. When this growth has 
reached a critical size the more nonlinear states found by Smith & Burggraf apply. 
Here we look at  the stability of the flow whilst it  is evolving on the p timescale. 

We recall that the stability of the E* layer is governed by (2.10) with 2U{ f x x  i i + f X T }  
replaced by DZU where D is the Dean number. We are now interested in the form 
of those equations in the Stokes layer. We first write 

k = koag+ ..., D = D0a4+ ..., 
and then expand U ,  V, W, P in the form 

!F 
U = [ Uo(X,  7, T )  + O(a-i)] exp { I ab(p) dp} , 

V = a:[ V,(X, 7, T') + O(a-i)] exp { I a:@) dp} , 

W = a;[ W,(X, 7, F )  + O(a-i)] exp { a b ( p )  dp} , 

P = a?[Pg(X, 7, T') + O ( d ) ]  exp { I ab(p) dp} . 

!F 

!F 

!F 

(4.18a, b) 

(4.19a) 

(4.19b) 

(4 .19~)  

(4.19d) 

The X variation enters the zeroth-order problem only through the x dependence of 
Tiol. The growth rate a(p)  depends on p through the p dependence of TOl. 

If the expansions (4.18a, b), ( 4 . 1 9 ~ 4 )  are substituted into (2.10) the zeroth-order 

(4.20 a) problem is found to be 

(4.20 b) 

(4.20 c) 

aWo+ WoF= -ik,Pg+(a;-k;} W,, (4.20d) 

V&+ik0 Wo = 0, 

guo+ Uop+ V,EolV = {a:-k:} U,, 

v v, + V,F- Do ZO1 uo = -Poll + {a; - k:} v,, 

which must be solved subject to 
uo= V - wo=o, 7 " O .  0 -  

(4.21 a )  
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so that the vortex structure is confined to  the Stokes layer. The eigenvaluc problem 
specified (4.20a-d), (4.21a,b) is identical to that studied by Hall (1984) in the context 
of Schlichting’s ( 1932) transversely oscillating cylinder problem. In fact, we identify 
(k, T) of (2.10) of Hall (1984) with ((2/8)ik,, ~ 2 D 0 ~ p 0 1 ~ 2 / ~ ) .  

It follows from the numerical calculations of Hall (1984) for the neutral case c = 0 
that the Tollmien-Schlichting wave is formally unstable for 

D,IP,,12 > 8.48SZ: = 0.000005 1, (4.22) 

which, for a given value of Do, determines P,, the critical Tollmien-Schlichting wave 
amplitude. 

A similar analysis governs the instability problem for the TollmienSchlichting 
wall layer a t  y = 1. The only change is that, because the layer is now on a concave 
wall, the sign of D in (4 .20~)  must be switched. Papageorgiou (1986) has investigated 
that eigenvalue problem and the critical state is then determined by 

D l ~ , , 1 ~  > 0.000003. (4.23) 

Thus the layer at y = 1 becomes unstable first, and presumably the flow becomes 
three-dimensional before the larger amplitude two-dimensional states of Smith & 
Burggraf develop. It is known from the experimental work of Seminara & Hall (1976) 
and Park, Barenghi & Donnelly (1980) that  the initial Stokes layer instability is 
followed by a secondary mode of instability at about 30% above the first critical 
Taylor number. I n  this regime the vortices interact and the disturbance persists 
beyond the Stokes layer. No adequate theoretical description of this non-equilibrium 
state is yet available but the consequences for the problem discussed here are 
important. We refer to  the fact that  if the Tollmien-Schlichting wave also undergoes 
this secondary mode of instability then there will be a mechanism for disturbances 
inside the Stokes layer to penetrate outside the boundary layer. 

We further note that if the mechanism described here does indeed apply to  external 
flows then Tollmien-Schlichting waves will generate Taylor-Gortler vortices if 
convex or concave regions exist. I n  the concave regions the Taylor-Gortler mechan- 
isms associated with the main deck basic state will be more unstable so that the 
TollmienSchlichting breakdown into the Stokes layer mode is probably only of 
practical importance in convex or flat regions. This problem is discussed in Appendix 
A. I n  Appendix B we extend the analysis of this section to cover oblique Tollmien- 
Schlichting waves. We will see that two-dimensional waves are the least stable. 

Finally, we note from the calculations of Hall (1984) that when instability occurs 
V,, W,, Po are of the form 

whilst 
m 

Uo = Uon E2n.  
m 

Some of the functions UOn(q) ,  Von(q) can be found in the paper by Hall (1984). 



Taylor4ortler instabilities of Tollmien-Schlichting waves 453 

5. Conclusion 
We have shown that the interactive boundary-layer flows of the type which arise 

in triple-deck theory can support Taylor-Gortler vortices. The form of the equations 
for steady flows is identical to that found for classical boundary layers if we interpret 
the wall curvature as the Gortler number. For unsteady boundary layers an extra 
term proportional to the streamwise gradient of the wall velocity is introduced into 
the equations. 

We have seen that Gortler instabilities of both steady and unsteady boundary 
layers can be described within the above framework. In particular, we showed that 
a large amplitude high frequency Tollmien-Schlichting wave can interact with a 
curved wall to give a Stokes layer Gortler vortex. Thus a two-dimensional Tollmien- 
Schlichting wave can develop a three-dimensional sublayer if the amplitude is 
sufficiently large. 

In Appendix A we determine the conditions under which the analysis of $4 applies 
to a Tollmien-Schlichting wave in a more general basic flow. We show that the 
analysis applies for flows which support Tollmien-Schlichting waves with wave- 
numbers large compared to Re-!. Thus for a classical subsonic boundary layer of 
thickness Re-4 the analysis does not apply. However this does not mean that the 
instability mechanism of $4 is not operational in such flows. 

In Appendix B we extend the analysis of $4 to investigate the instability of oblique 
Tollmien-Schlichting waves. In particular we investigate the question of which type 
of Tollmien-Schlichting wave is the most susceptible to the Stokes layer instability. 
In order to answer the question we fix the frequency of the given Tollmien-Schlichting 
wave and find the orientation of the wave which leads to instability at the smallest 
amplitude. We find that the instability of an oblique Tollmien-Schlichting wave can 
be related to that of an equivalent two-dimensional one. Moreover the two-dimen- 
sional Tollmien-Schlichting wave is shown to be unstable at the smallest amplitude. 

It is also worth pointing out that the larger amplitude states of Smith & Burggraf 
are also almost certainly centrifugally unstable. The instability properties of this 
regime cannot be obtained so easily because the basic state in the sublayer now 
satisfies a nonlinear problem which must be solved numerically. We would anticipate 
that, with 6 z Re-!, the growth rates of these states would be larger than those 
associated with $4. Alternatively, we would expect that these states could be 
centrifugally stable at smaller values of the curvature. 

The main purpose of this paper has been to demonstrate asymptotically that two 
examples of flows governed by interactive boundary -layer theory are centrifugally 
unstable. We should not overlook the fact that these flows are also often unstable 
to possibly more unstable disturbances such as Rayleigh modes or Tollmien- 
Schlichting waves. However, the question of which mode will dominate the instability 
characteristics for a given flow cannot be answered by the type of linear analysis 
given here. Thus it is pointless to speculate which type of instability will be the most 
physically important. 

Research was supported by the National Aeronautics and Space Administration 
under NASA Contract No. NASI-17070 while P.H. was in residence a t  ICASE, 
NASA Langley Research Center, Hampton, VA 23665, USA. J.B. was supported by 
the SERC whilst this work was completed. 
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Appendix A. The instability of two-dimensional Tollmien-Schlichting 
waves in other flows 

Here we derive the conditions which enable the instability mechanism of $4 to be 
operational in more general high-Reynolds-number flows. Suppose that there is a 
high-Reynolds-number flow past a wall of typical radius of curvature a. If d and U,* 
denote a typical length and a typical velocity along the wall we define Re and 6 by 

d a = -  U,* d 
R e = - ,  

V a' 
and it is assumed that 

R e B 1 ,  s < l .  
If this basic state is to  support Tollmien-Schlichting waves having a triple-deck 
structure with depth Y and length X in the normal and downstream directions we 
require that 

Y x R e - k i X ; ,  for any inviscid-viscous interaction (A 3) 

and h5X4 x Re for a triple deck. (A 4) 

Here h denotes the dimensionless shear stress of the basic state a t  the wall. 
If the lower deck is to support a Gortler vortex instability the continuity and 

normal momentum equations show that u and v, the x and y disturbance velocity 
components, must satisfy 

u, x vy 
and us x vz. (A 6) 

6 x YX-2 x Re-th-iX-8. (A 7 )  

Thus for the channel-flow problem of $4 we have X x Re:, h = O(1) and then (A 7 )  

In  view of (A 3) we therefore require that 

gives 

which is the scaling used in $4. However if we wish to apply the analysis of $4 to 
a Tollmien-Schlichting wave governed by triple-deck theory then (A 4), (A 7 )  yield 

6 x Re-%. (A 8 )  

A-' + Re!, (A 9) 

The original constraint 6 < 1 leads to the condition 

A-' is in effect the thickness of the oncoming boundary layer and will depend on the 
flow under consideration. For example, in a subsonic developing boundary layer on 
a plate, the mechanism of $4 will only apply a t  distances greater than O(Re!) from 
the leading edge. 

Appendix B. The instability of oblique waves in channel flows 
Here we briefly show how the results of $4 can be generalized to  investigate the 

Taylor-Gortler instability of oblique Tollmien-Schlichting disturbances in channel 
flows. The basic state is now three-dimensional and the results of Hall (1985) for the 
Gortler instability of a classical three-dimensional boundary layer are relevant. It 
was shown in that paper that  a weak crossflow applied to  a two-dimensional 
boundary layer will in general be sufficient to prevent the occurrence of Gortler 
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vortices. The only exception is for flows where the spanwise and chordwise velocity 
components are proportional. In that case the instability of the flow can be described 
in terms of an equivalent stability calculation for a two-dimensional flow. 

It turns out that the exception described above applies to the instability problem 
for oblique waves in a curved channel. This is because, as shown by Smith (1986), 
in the high-frequency limit the spanwise and chordwise velocity components are 
proportional. We first note that the eigenrelation corresponding to an oblique wave 
with wavenumbers a and /3 in the x- and z-directions and frequency w is 

with Eo = -wei'"a-i. (B 1 b )  
This is the generalization of the two-dimensional result (4.13) and for large w yields 

w x ${ 1 +$} 
We confine our investigation to the limit a+ 00 with 

[1+ B2] 
w = a352 = a3- 

60 ' $ = aB, 

where B and SZ are O(1). For oblique waves the Tollmien-Schlichting wave in the 
lower deck develops a double-layer structure with an inner Stokes layer of thickness 
a-1 and an outer layer of thickness a2. Here we study the instability of the a-! layer. 
In this layer the oblique wave can be written as 

u = s2{aiiiol E+  c.c.}+ = e2{a&iol + . . .}, 
w = ~ 2 { a - i ~ ~ ~  E +  c.c.} + = e2{a-izol + . . .I, 
w = c2{aizZOlE+c.c.}+ = e2{abOl+ ...I, 
p = e4{a!jjO1 E+ c.c.}+ = e 4 { a i j ~ ~ ~  + . . .I. 

(B 3a)  

(B 3b) 

(B 3c) 

(B 3 4  

where 

$01 = Buo1, 

pol = constant, 

E = exp{i[X+BZ-SZTl}, 

X = aex, Z = aez, T = a3~3t .  
- 

In the outer O(a2)  layer the above flow adjusts to that necessary to match with the 
flow in the core. The amplitude p, ,  again grows exponentially on a slow timeucale, 
for convenience we ignore that time-variation in the following instability calculation. 

The flow in the inner O ( a - f )  layer, given by (B 3a-d))  is essentially the same as the 
flow in the two-dimensional case, (4.16) and (4.17), but a t  an angle to the curvature. 
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We now perturb this flow by a Gortler vortex aligned with the velocity: 
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u' = (e2( U, cos # + . . .) + e5( - at W, sin # + . . . ), ~5(at  V, + . . .) + . . . , 
e2(U0 sin#+ ...)+ E5(a:WO cos$+ ...))E'+ c.c., 

P' = cLoaYPO E'+ c.c. 

(B 4) 

where 

and 

where 

U,, V,, W, and & are functions of 6,  P and F,  
6 = X cos#+Z sin#. 

Here # is the angle that the basic flow (B 3a-d) makes with the curvature and is 

given by tan#  = B. (B 5 )  

We then write 26 = e4D = e4a4D0, 

and the linear stability equations determining (U,, V,, W,) and P, are found to  be: 

from continuity Glop + ik, W, = 0, (B 6a) 

UoT + V,(Eo, cos # +Wol sin #)p = {+z- ki} U,, (B 6b) 

&T-D,E,~ U,  COS# =-P,p+{apz-k@ V,, 

from (X-momentum) cos# + (2-momentum) sin#, 

from the Y-momentum, 

(B 64 
from (2-momentum) cos # - (X-momentum) sin #, 

KT = - ik, P, + {+ - k;} W,, 

which must be solved subject to 

u,=V,=w,=o, B = o ,  B-ta3. (B 7) 
These equations again correspond to (2.10) of Hall (1984) with (k, T) replaced by 
( (2/Q)ik,, (2/Q)f(lp0112/Q3) Do).  Thus at the inner bend instability occurs for 

D,lp,J2 > 8.48Q+:, (B 8) 

with 
( l+B2) Q=- 

60 * 

We can use (B 8) to find out whether, for a given frequency, an oblique wave is 
unstable a t  a smaller amplitude than is a two-dimensional one. Suppose that A 
denotes a typical velocity in the 6 direction of the Tollmien-Schlichting wave. It 
follows from (B 4) and the definitions of uol, etc. that  without any loss of generality 
we can take 

A = ~pol~aX2-1(  1 + B2):. 

The condition (B 8) then can be written in the form 

DA2 > 8.48&{1 +B2},  (B 9) 

where the Dean number D ,  frequency Q and amplitude A are independent of B which 
determines the orientation of the wave. It follows from (B 9) that instability occurs 
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first for B = 0 which corresponds to a two-dimensional Tollmien-Schlichting wave. 
We conclude that the two-dimensional form of the Tollmien-Schlichting wave is the 
most unstable to Taylor-Gortler vortices. 
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